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Quadratic Splines
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Error bounds are obtained for quadratic splines satisfying a mean averaging
condition with respect to a nonnegative measure.

1. INTRODUCTION

Recently Schoenberg [5] and de Boor [1] have considered even degree
splines whose integral means between knots agree with the same means of a
given function. Schoenberg has brought out the interest of this kind of mean
averaging condition in statistical problems. Earlier studies on even degree
splines have considered splines which interpolate a given function at the
midpoints of knots. More recently, without making any assumption on the
partition, Marsden [4] has determined the error bounds for quadratic splines
which interpolate a given function at the midpoints of knots. This result is
unlike some results on cubic spline interpolation which depend on the nature
of the partition. Our aim is to show that error bounds similar to those of
Marsden hold for quadratic splines satisfying mean averaging conditions
with respect to a nonnegative measure. It is of some interest to mention that
Varga [7] has considered error bounds for splines satisfying conditions
involving functionals using a different approach.

In Section 2 we study the problem of existence and uniqueness of a
quadratic spline satisfying the mean averaging condition (2.1). Section 3
deals with a special case not covered by Theorem 1 of Section 2. We also give
a best approximation property of the interpolatory quadratic spline when the
number of knots is odd and the interpolant is periodic. In Section 4, we obtain
explicit error bounds when the interpolant is I-periodic and is either con­
tinuous or EO Cl or C2.
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2. EXISTENCE AND UNIQUENESS
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Let Ll = {O = Xo < Xl < ... < X n = I} be a partition of [0, 1] and let
Sp(m, Ll) = {sex): sex) E Cm - 1[0, 1], SeX) E 1Tm for X E (x, , Xh1). i = 0,
1, ... , II - I}, where m is any positive integer. We propose

PROBLEM A. Let f be a I-periodic locally integrable function with respect
to a nonnegative measure dfL. Find sex) E Sp(2, Ll) where s(o) = s(l),
s'(O) = s'(1) and

(Hl (f(x) _ sex»~ dfL = 0,
Xi

i = 0, 1, ... ,11 - 1. (2.t)

If fLeX) = x, condition (2.1) has been studied by Schoenberg [5] and also
by Demko and Varga [2]. If fLeX) is a step function with jumps of one at the
midpoints of knots, then (2.1) reduces to

i = 0, 1, ... ,11 - 1, (2.1a)

which was considered by Marsden [4].
By a suitable choice of dfL, it is possible to reduce (2.1) into

i = 0, 1, ... , n - 1. (2.1 b)

We shall return to this special case in Section 3.
The number of parameters in sex) is n + 2 which agrees with the number

of linear conditions given by (2.1) and the assumption of periodicity.
We shall now need two kinds of representation for the spline sex) of the

problem. The first one is in terms of S/(Xj) - Mj,j = 0, 1, ... , n - 1, and the
second one is in terms of s(Xj) SJ , j = 0, 1,... , n - 1.

Let us first find a representation of sex) in terms of M j • Then s'(x) is linear
in Xj-l ~ x ~ x) , so that setting hj = Xj - X)-1 , we have for x E [X)-1 , xJJ,

( ) _ -M (Xj - x)2 I M (x - Xj-l? +
S x - j-l 2h. T J 2h- Cj,

J J

j = 1, .. , n. (2.2)

Here c/s are constants determined by the continuity requirement of sex).
Hence

Set

j = 0, 1, ... , n - 1. (2.3)
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v = 1,2,

for j = 1, ..., 11.

If sex) satisfies (2.1), we get from (2.2)

j = 1,... ,11. (2.4)

Suppose H j =1= 0 for all j. Then from (2.3) and (2.4), we have the following
system of equations in the parameters M 3 :

(2.5)

j = 1, ... ,11.

The coefficients of M j - 1 , M j , M j +1 are easily seen to be nonnegative.
A sufficient condition for the existence and uniqueness of the solution of the
system of equations (2.5) and hence of the Problem A is that the matrix
of the system (2.5) is irreducibly diagonally dominant. The difference of the
coefficient of M j and of the sum of the coefficients of M j - 1 and M j +1 is
easily seen to be

which is certainly ~O. Since the matrix of system (2.5) is irreducible, we
shall only require that

We have thus proved

for somej. (2.6)

THEOREM 1. If (2.6) holds for some j, and H j > 0 for every j, then there
exists a unique sex) E Sp(2, L1) which satisfies the conditions of Problem A.

We shall now find a representation of sex) in terms of its values at the nodes.
Indeed, for Xj-l ~ x ~ Xj , we have
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where the constants D1 are to be determined from the continuity of s'(x)
and from (2.1). This leads to the following system of equations:

!2 B(I) + Sj-1 A (1) + D.f. = F)I,
K . 1 K. ) ) I) v'
J) F".)

j= J, ... ,IJ,

(2.7)

j = 1, ... ,n.

Eliminating D/s from the system (2.7), we have the system of equations to
determine 8):

(j = 1,2,... , n).
(2.8)

It is easy to see that elements of the matrix of this system are nonnegative.
Under the condition of Theorem 1, we know that sex) exists and is unique.
Hence system (2.8) has a unique solution. However, we would like to know
when the matrix of (2.8) is diagonally dominant. A sufficient condition for
this is that dp., be symmetric in each subinterval (X1-1 , Xi) about the midpoint.

3. A SPECIAL CASE

In the special case of (2.1b), it is easy to see that condition (2.6) is not
satisfied. However it is still possible to solve Problem A in this case. We seek
the spline Sex) E S(2, L1) such that

v = 0, L..., n ~ 1, (3.1)

wherej" = j(xv). Denoting again S'(xv) by M v , we get as above the following
system of equations in M v :

v = 1,... , n,

(3.2)

where M n = M o , in = fo. The system (3.2) is not diagonally dominant.
However, we first rewrite (3.2) in the form

jJ = 1,... , n,
and if n is odd, we get

(3.3)
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whence we have for n odd

As in Section 2, we have for Xv- l ~ x ~ Xv ,

S( ) = -M (xv - X)2 + M . (x - Xv_I)2 +
X v-I 2h v 2h cv ,

v v

(3.4)

where M;s and c;s are connected by the following relations because of (3.1):

_ Mv_Ihv + 2 + Mvhv = I' +j'
2 cv 2 lv-I v, v = 1,... , n. (3.5)

Hence it follows from (3.3), (3.4) and (3.5) that S(xv) = Iv, v = 1,... , n.
We have thus proved

THEOREM 2. For every I-periodic function f(x) there exists a unique
quadratic spline Sex) E Sp(2, L1) satisfying (3.1) (fand only ifn is odd. Moreover,
Sex) interpolates f(x) at the nodes.

Remark 1. If (3.1) is replaced by

v = 1,... , n, (3.Ia)

then the conclusion of Theorem 2 is still valid if ex oF -1.
We shall now show that the spline Sex) of Theorem 2 has a best approxi­

mation property with respect to the functional L(1) where

nIX)
L(f) = L {f'(x) + j'(Xj-1 + Xj - x)}2 dx.

J~l X,_l

More precisely we shall prove

THEOREM 3. Let LI = {O = X o < Xl < ... < Xn = I} be a partition for
a given odd integer n. Let f(x) be absolutely continuous on [0, 1] with j'(x) E

V[O, 1]. IfSf is the interpolatory quadratic spline of Theorem 2, then

L(f - S) ? L(f(x) - Sf(X)), (3.6)

where Sex) is any I-periodic spline E Sp(2, L1). Moreover, equality will hold
only ifSex) = stCx) + c where c is an arbitrary constant.

Proof We shall need the identity

L(F(x) - SF(X)) = L(F) - L(SF(X)). (3.7)
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The proof of this follows on rewriting L(F - SF) as

nIX]
L(F) - L(SF) - 2 L [F'(x) + F'(X'_l + Xj - x) - S/(x)

J=1 XJ-l

- S/(Xj_l + x) - x)] . [S/(x) + S/(X1-1 + x) - x)] dx
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and on observing that the last sum vanishes on integration by parts.
We observe that if f(x) is I-periodic and if Sex) is any I-periodic

quadratic spline E Sp(2, L1), then

Replacing F(x) in (3.7) by f(x) - Sex), we get

L(f - S) = L(Sf-S) +L(f - Sf),

which proves inequality (3.6). In case of equality in (3.6), we have

Let Mj denote the slope of the quadratic spline Sf-S at Xj . Then from the
definition of L, we see that

j = 1, ... , n

and since n is odd, Mj = 0 for all j. Hence Sf-S Sf - S = c, which
completes the proof.

4. ERROR ESTIMATES

In the sequel w(f; h) will denote the modulus of continuity off

(a) Letfbe I-periodic and E C2[O, 1]. Set e(x) = sex) - f(x) where sex)
is the quadratic interpolatory spline of Theorem 1 and let e~V) = e(v)(xi),
)J = 0, 1, 2. We shall now prove

THEOREM 4. The following error bounds hold:

II e II ~ ..1(L(J) + (..1/2» w(!,,; .3),

II e' II ~ (L(..1) + (..1/2» w(!,,; .1),

II elf II ~ (1 + (L(..1)/~» w(!,,; ..1),

where .3 = maXi h, , ~ = min; hi and

(4.1)

(4.2)

(4.3)

(4.4)
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Since f(x) = fj + (x - Xj) f/ + ((x - Xj)2(2) 1"(gj), and since f'(x) =
fj' + (x - Xj) 1"(7]j), where gj , 7]j lie between Xj and x, the right side of (4.5)
becomes

By the classical argument based on the diagonal dominance property, we get

max I e/ I ~ L(.2f) . w(f"; 21).
}

Since e'(x) is linear in each interval (Xi-I, Xi)' the rest ofthe argument follows
the reasoning in [3, p. 245].

(b) LetfE C[Q, 1] and letfbe I-periodic. Then we can prove

THEOREM 5. The following error bounds hold:

II e II ~ 3(1 + .11(3)) w(f'; .21),

II e' II ~ (l + .11(3)) w(f'; 3),

where

(4.6)

(4.7)

- 12h All) + A(2) 2h B ll ) + B(2) !A(L!) = max _"_V__v_ , _"_V "_ .
"2K" 2K"

The proof again begins with the system of equations (4.5) and follows the
same lines as that of Theorem 3 with suitable modifications.

(c) If fE C[Q, 1] and is I-periodic, we have to use the system of
equations (2.8). In order to be able to use the diagonal dominance property,
we shall assume that dfL is symmetric in each subinterval (Xj-l , Xj) about the
midpoint. Then we can prove

THEOREM 6. When f is I-periodic and E C[Q, 1], we have

lie [[ ~ (I + m~y (hlHj/Kj)) w(f; 3/2).
}

(4.8)
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The proof is based on the system of equations (2.8) and follows the same lines
as above with suitable modifications. In particular cases when dfL is some
specific measure, it may be possible to reduce the constant on the right side
in (4.8). More precisely, in the case of interpolation at the midpoints, we can
get the same constant as in [4, Theorem 2.1].

EXAMPLE. If dfL = dx, then L(J) = J in Theorem 4 and A(J) = 4 in
Theorem 5 and in formula (4.8), we get II e II ~ 7w(f; .3/2).

Remark 2. It is easy to construct an example of a measure dfL which is
not symmetric in any subinterval about its midpoint such that the system of
equations do not have a diagonally dominant matrix. More precisely, if we
interpolate a continuous I-periodic function by quadratic splines at
exxv_ 1 + (1 - a) Xv for a fixed positive small ex, (v = 1,... , n), then the
estimate for the error e(x) depends on the relative size of successive intervals.

Remark 3. The best approximation property of Theorem 3 can be easily
generalized to general even degree splines with an odd number of knots which
interpolate a given periodic function at the knots.

Remark 4. The estimates (4.1), (4.2) in Theorem 4, (4.6), (4.7) in
Theorem 5, and (4.8) in Theorem 6 do not depend on the mesh ratio for a
large number of measures. It may be of interest to point out that the smallest
value of the constant maxj hj

2H J /Kj which appears in (4.8) of Theorem 6
takes its minimum value when we deal with interpolation at the midpoints.
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